Protein form and function

Whitehead Institute scientists have determined that a protein known as YOD1 plays a critical role in the disposal of misfolded cellular proteins. The researchers identified YOD1’s role by blocking its function, a manipulation that halts the elimination of errant proteins entirely. The finding should help bring greater understanding to this vital but complex cellular process.

Researchers have created an algorithm that meshes existing data to produce a clearer step-by-step flow chart of how cells respond to stimuli. Using this new method, Whitehead Institute and Massachusetts Institute of Technology scientists have analyzed alpha-synuclein toxicity to identify genes and pathways that can affect cell survival. Misfolded copies of the alpha-synuclein protein in brain cells are a hallmark of Parkinson’s disease.

Even the most drug-resistant fungi can be eradicated in multiple in vitro and in vivo models using a lethal combination of an antifungal agent and inhibition of a specific heat shock protein (Hsp90). Such findings could point to a novel approach for the development of future antifungal therapies for patients with compromised immune systems, including HIV, chemotherapy, and organ transfer patients.

Blocking a specific protein complex (mTORC2) prevents prostate tumor formation in mice with a deleted PTEN gene. Inhibition of this complex in normal prostate cells, however, appears to have no effect, suggesting that the protein complex may be a future target for drug development.